Skip to main content

Μαθηματικά σύνολα και διαγράμματα Venn

Γ Γυμνασίου Πιθανότητες (Ιούνιος 2025)

Γ Γυμνασίου Πιθανότητες (Ιούνιος 2025)
Anonim

Μαθηματικά, ένα σύνολο είναι μια συλλογή ή λίστα αντικειμένων. Τα σύνολα δεν αποτελούνται μόνο από αριθμούς, αλλά μπορούν να περιέχουν οτιδήποτε περιλαμβάνει:

  • το φαγητό στο ψυγείο σας.
  • τους πλανήτες στο ηλιακό σύστημα.

Παρόλο που τα σύνολα μπορούν να περιέχουν οτιδήποτε, συχνά αναφέρονται σε αριθμούς που ταιριάζουν σε ένα μοτίβο ή σχετίζονται κατά κάποιο τρόπο, όπως:

  • σύνολο θετικών ζυγών αριθμών μικρότερο από 10: (0, 2, 4, 6, 8).
  • σύνολο αποπαράγοντες για τον αριθμό 12: (1, 2, 3, 4, 6, 12).

Ορισμός συμβολισμού

Τα αντικείμενα σε ένα σετ καλούνται στοιχεία και τα ακόλουθα σημειογραφία ή οι συμβάσεις χρησιμοποιούνται με σύνολα:

  • Μεμονωμένα κεφαλαία γράμματα χρησιμοποιούνται για την αναγνώριση συνόλων - όπως π.χ. J, Ε, ή φά ;
  • Μικρά γράμματα ή αριθμοί χρησιμοποιούνται για στοιχεία ενός σετ.
  • Οι σγουρές braces {} υποδηλώνουν μια λίστα στοιχείων σε ένα σετ.
  • Τα κουμπιά χρησιμοποιούνται για να διαχωρίσουν τα στοιχεία.

Έτσι, τα παραδείγματα της καθορισμένης συμβολής θα ήταν:

J = {μήκους, καταιγίδας, ουρανίου, ποσειδώνα}

E = {0, 2, 4, 6, 8}.

F = {1, 2, 3, 4, 6, 12}.

Παραγγελία στοιχείου και επανάληψη

Τα στοιχεία σε ένα σετ δεν χρειάζεται να είναι σε κάποια συγκεκριμένη σειρά έτσι το σύνολο J παραπάνω θα μπορούσε επίσης να γραφτεί ως:

J = {γένος, μήνας, ποσειδώνας, ουράνιο}

ή

J = {ποσειδώνας, μήκο, ουράνιο, καστανό}

Τα επαναλαμβανόμενα στοιχεία δεν αλλάζουν το σετ, έτσι ώστε:

J = {μήκους, καταιγίδας, ουρανίου, ποσειδώνα}

και

J = {μήκους, καταιγίδας, ουρανίου, ποσειδούς, μήκους, καταιγίδας}

είναι το ίδιο σετ επειδή και οι δύο περιέχουν μόνο τέσσερα διαφορετικά στοιχεία: τον Δία, τον Κρόνο, τον Ουράνιο και τον Ποσειδώνα.

Σετ και ελλείψεις

Αν υπάρχει άπειρος - ή απεριόριστος - αριθμός στοιχείων σε ένα σύνολο, μια ελλειψία (…) χρησιμοποιείται για να δείξει ότι το σχέδιο του σετ συνεχίζεται για πάντα προς αυτή την κατεύθυνση.

Για παράδειγμα, το σύνολο των φυσικών αριθμών αρχίζει από το μηδέν, αλλά δεν έχει τέλος, οπότε μπορεί να γραφτεί με τη μορφή:

​{0, 1, 2, 3, 4, 5, }

Ένα άλλο ειδικό σύνολο αριθμών που δεν έχει τέλος είναι το σύνολο ακεραίων. Δεδομένου ότι οι ακέραιοι μπορούν να είναι θετικοί ή αρνητικοί, το σετ χρησιμοποιεί ελλείψεις και στα δύο άκρα για να δείξει ότι το σύνολο συνεχίζεται για πάντα και προς τις δύο κατευθύνσεις:

{, −3, −2, −1, 0, 1, 2, 3, }

Μια άλλη χρήση για τις ελλείψεις είναι να γεμίσετε τη μέση ενός μεγάλου σετ όπως:

​{0, 2, 4, 6, 8, …, 94, 96, 98, 100}

Η ελίκωση δείχνει ότι το μοτίβο - ακόμη και αριθμοί μόνο - συνεχίζεται μέσω του άγραφου τμήματος του σετ.

Ειδικά σύνολα

Ειδικά σύνολα που χρησιμοποιούνται συχνά αναγνωρίζονται χρησιμοποιώντας συγκεκριμένα γράμματα ή σύμβολα. Αυτά περιλαμβάνουν:

  • Ø ή{ } - το κενό σετ - ένα σύνολο που δεν περιέχει στοιχεία ;
  • U - το γενικό σύνολο - ένα σετ που περιέχει όλα τα στοιχεία σχετικά με έναν συγκεκριμένο ορισμό ορισμού ;
  • Ζ - το σύνολο όλων των ακεραίων:Ζ = {, −3, −2, −1, 0, 1, 2, 3, };
  • Ν - φυσικοί αριθμοί (θετικοί ακέραιοι αριθμοί):Ν = {0, 1, 2, 3, 4, 5, }.

Περιλήψεις εναντίον περιγραφικών μεθόδων

Γράφοντας ή αναφέροντας τα στοιχεία ενός σετ, όπως το σύνολο των εσωτερικών ή των γήινος πλανήτες στο ηλιακό μας σύστημα, αναφέρεται ως καταγραφή ρόστερ ή το roster .

Τ = {υδράργυρος, venus, γη, mars}

Μια άλλη επιλογή για την αναγνώριση των στοιχείων ενός συνόλου είναι η χρήση του περιγραφική μέθοδος, το οποίο χρησιμοποιεί μια σύντομη δήλωση ή όνομα για να περιγράψει το σετ όπως:

T = {οι επίγειοι πλανήτες}

Ορισμός-Builder Notation

Μια εναλλακτική λύση στη λίστα και τις περιγραφικές μεθόδους είναι η χρήση set-builder notation , η οποία είναι μια μέθοδος στένωσης που περιγράφει τον κανόνα που ακολουθούν τα στοιχεία του σετ (ο κανόνας που τα κάνει μέλη μιας συγκεκριμένης ομάδας) .

Η συμβολική τιμή για το σύνολο φυσικών αριθμών που είναι μεγαλύτερο από το μηδέν είναι:

x ∈ N, Χ > 0

ή

{x: x ∈ N, Χ > 0}

Στη συνάρτηση set-builder, το γράμμα "x" είναι μια μεταβλητή ή σύμβολο κράτησης θέσης, η οποία μπορεί να αντικατασταθεί από οποιοδήποτε άλλο γράμμα.

Χαρακτήρες στενογραφίας

Οι χαρακτήρες στενογραφίας που χρησιμοποιούνται με τη συμβολική απεικόνιση των κατασκευαστών περιλαμβάνουν:

  • Η κατακόρυφη ράβδος ή το κόλον (| ή: χαρακτήρες) - οι διαχωριστές διαβάζονται ως έτσι ώστε;
  • Το πεζικό epsilon ( χαρακτήρας) - διαβάζεται ως είναι ένα στοιχείο του?
  • ο χαρακτήρα - διαβάζεται ως όχι ένα στοιχείο.

Ετσι, x ∈ N, Χ > 0 θα μπορούσε να διατυπωθεί ως εξής:

"Το σύνολο όλων Χ , έτσι ώστε Χ είναι ένα στοιχείο του το σύνολο φυσικών αριθμών και το x είναι μεγαλύτερο από 0. "

Σετ και διαγράμματα Venn

Ένα διάγραμμα Venn - μερικές φορές αναφέρεται ως α set diagram - χρησιμοποιείται για την εμφάνιση σχέσεων μεταξύ των στοιχείων διαφορετικών συνόλων.

Στην παραπάνω εικόνα, η επικαλυπτόμενη ενότητα του διαγράμματος Venn δείχνει τη διασταύρωση των συνόλων E και F (στοιχεία κοινά και στα δύο σύνολα).

Παρακάτω παρατίθεται η συμβολική περιγραφή του κατασκευαστή (η ανάποδη "U" σημαίνει τομή):

E ∩ F = x

Το ορθογώνιο όριο και το γράμμα U στη γωνία του διαγράμματος Venn αντιπροσωπεύουν το γενικό σύνολο όλων των στοιχείων που εξετάζονται για αυτή τη λειτουργία:

U = {0, 1, 2, 3, 4, 6, 8, 12}